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Lattice Gas Automata for Simple and Complex Fluids 

Shiyi Chen, l'2 G. D. Doolen, 2 and W. H. Matthaeus ~ 

We review some recent applications of lattice gas automata, including 
flow through porous media, phase transitions, thermodydrodynamics, and 
magnetohydrodynamics. 
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1. I N T R O D U C T I O N  

The recent development of lattice gas automata (33 35.64) has provided a new 
numerical method for solving the Navier-Stokes equations and other 
partial differential equations. Lattice gas automata are idealized many- 
body systems that allow particles to move and scatter in a discretized lat- 
tice space at discrete times. The basic idea in a lattice gas is to use simple 
microscopic operations on a lattice to generate meaningful statistical 
macroscopic quantities, which could be either the solution of partial 
differential equations or some other interesting physical phenomena. 

The most important property of lattice gas models from the point 
of view of particle motions and collisions is that all operations are 
purely discrete, local, and logical which is ideal for parallel computing. 
A speed of 3 * 10 8 cell updates per second on a CRAY-XMP and 8 * 10 9 

cell updates per second on a Connection-Machine 2 can be obtained. 
A fundamental feature of the lattice gas model is its flexibility. The 
original simple lattice gas model can be generalized to simulate many 
different physical systems. At the present stage, lattice gas methods can 
solve many partial differential equations, including the Navier-Stokes 
equations, (25'29'41'42'46'51'77"82) the Burgers equation, (5'23) the Poission 
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equation, (17) the wave equation, (t5"49) and the diffusion equation (2 4,54,68); 
and model many physical phenomena, including flow through porous 
media, (1'7'19'vz'8~ turbulent flows, (57'81~ phase transitions, (12-14'18) multi- 
phase flows, (9'21'43'47'73"78) chemical-reacting flows, (27'55"76} thermohydro- 
dynamics, (1~176 magnetohydrodynamics, (16'65) liquid crystals, (~8'59) and 
semiconductors. (7~ Lattice gas methods locally conserve total mass, 
momentum, and energy exactly during all processes. Thus, there is no 
roundoff error and the scheme is unconditionally stable. Moreover, lattice 
gas methods can easily handle very complicated geometry and boundary 
conditions. For example, the nonslip condition can be implemented by par- 
ticle velocity reversal at boundaries, which is crucial for its applications in 
flow through porous media. Theoretical studies of lattice gas systems are 
also relatively simpler than classical continuum systems. Transport proper- 
ties (26'4~ and long-time behavior of correlations ~38'39) can often be 
exactly solved, while they are more difficult to obtain in continuum 
systems. 

There are two main restrictions for lattice gas models in the simulation 
of fluid flow. First, the Reynolds numbers and Mach numbers cannot be 
too big. The incompressible Navier-Stokes equations are obtained only in 
the low-Mach-number limit. ~6~ This restriction can be relaxed if one uses 
multiple discrete velocity models. ~8'111 Second, signals in lattice gas models 
are usually noisy, ~28'22) requiring spatial and time averaging. Lattice 
Boltzmann methods,(61) in which real numbers replace the bits in the lattice 
gas model, greatly reduce the fluctuations. In the present paper, we intend 
neither to discuss methods to overcome the problems in lattice gases ~63'2~ 
nor to give general conclusions for the validation of these models nor to 
compare the lattice gas techniques with traditional methods. We restrict 
ourselves to the basic principles of the lattice gas methods, introduce some 
detailed lattice gas models that have been developed, and discuss their 
applications. 

The paper is organized as follows: In Section 2, we present the basic 
ideas of the lattice gas and discuss the two- and three-dimensional lattice 
gas models, which form the basis of all other models. Section 3 discusses 
single-phase and two-phase flow through porous media, which have 
emerged as an important application of lattice gas methods during the last 
4 years. In Section 4, we will discuss a phase transition model, which 
can be used to simulate shock waves and to model liquid crystal 
hydrodynamics. Section 5 describes the temperature-dependent lattice gas 
model, including B6nard convection. Section6 discusses our recent 
developments on magnetohydrodynamics, including the simulation results 
of classical Hartman flow and Alfv6n waves. In the last section, we give a 
brief summary on the current and future research on this field. 
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2. BASIC PRINCIPLES OF LATTICE GAS METHODS 

Unlike the lattice Boltzmann method (61~ and discrete velocity 
models, (8,~1~ lattice gas methods emphasize the discreteness and use only 
very few values of velocity. Lattice gas methods for hydrodynamic systems 
were originally proposed by Hardy et al. (HPP)  (44'45) on a square lattice in 
two dimensions. But there are serious problems in the square lattice, 
notably spurious momentum conservation and nonisotropy of the stress 
tensor. The important contribution made by Frisch et al. (FHP)  (41) was to 
show that a hexagonal lattice gas model has an isotropic stress tensor and 
has greatly reduced the spuriously conserved quantities. 

The basic 2D six-bit F H P  lattice gas model (41'82) consists of identical 
particles on a hexagonal lattice with lattice unit c = 1. All particles have the 
same mass and they reside only on the sites of the hexagonal lattice. There 
are six different particle momentum states at each lattice site, associated 
with the directions e~ = [cos(2~a/6), sin (2ga/6)], a = 1,..., 6. An exclusion 
rule is imposed so that no more than one particle at a given site can have 
a given momentum state. If we use N~(x), a = 1,..., 6, to denote the particle 
occupation in state a at site x, then Na = Oor 1. There are two microscopic 
updating processes at each discrete time step: advection and collision. In 
the advection process, a particle in state ea moves from its present site to 
the nearest neighbor site in the direction e~; all particles have the same 
speed ( =  1) and the same kinetic energy. In the collision process, particles 
at each site are redistributed among the six momentum states at the same 
site in such a way that the total particle number ( = Z 6 =  1 No) and the total 
momentum (=Z6a= ~ ~N~)  are conserved. Since all particles have the same 
mass and speed, energy conservation is equivalent to mass conservation for 
this model. The original F H P  model only uses two-body and three-body 
collisions. In order to decrease viscosity and increase the Reynolds number 
Re (Re = UL/v, U and L are the characteristic velocity and length of the 
system, respectively; v is the kinematic viscosity-), the saturated collision (3~ 
has been used. In addition to that, one can also add another bit to 
represent a particle at rest, greatly increasing the collision frequency and 
the Reynolds number. It can be shown that at equilibrium the F H P  lattice 
gas behaves like an ideal gas, ~42'82) p = n/2, where n is the average particle 

density and the sound speed is 1/x/~. 
The microdynamical evolution of the F H P  system can be described 

exactly by the following microscopic equation: 

Na(x + ea, t +  1)=  Na(x, t ) + A a  (1) 

where A a represents the collision operator, which includes the creation or 
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annihilation of a particle in momentum state % and only depends on the 
information at the site x at time t. The collision operation has the form 

Aa= Z ( s ,_s )  P(s__, s,) l-] N],(1 _ NjJ) 1 ,i (2) 
s , s '  j 

where s = (&, s2,..., s6) and s' represent the local states before and after 
collision. P(s ~ s') is the transition probability from state s to s'. 

Particle and momentum conservation are satisfied if ~6_  1 A a = 0 and 
6 Y~a= 1%A~ = 0. The fluid density and momentum are defined as follows: 

n(x, t )=   L(x, t) 
a (3) 

j(x, t ) = n v =  ~ f o ( x ,  t)% 
a 

where 
f~(x, t )=  (Na(x, t ) )  

and ( - . . )  denotes an ensemble average. 
If the microscopic collision transition probability P in (2) satisfies the 

semi-detailed balance condition 

y 
s 

then one can prove that collisions will make the system approach a local 
equilibrium, described by a Fermi-Dirac distribution: 

1 

fa = 1 + exp(~ + fie a �9 v) (4) 

where cr and fl are Lagrange multipliers determined by mass and momen- 
tum conservation. 

Assuming L >> 1 and T>> 1, where T is the macroscopic characteristic 
time, from (1), one obtains the continuum version of the kinetic equation: 

0 , L  + ea'Vf~ = Q~ (5) 

where g2 is the collision operation obtaining by replacing fa for Na in A. 
After ensemble averaging the microscopic equation and using the 
Chapman-Enskog expansion, it can be shown that the FHP system 
approximates the following fluid equations~41'42): 

O,n + V "  (nv)=O 

~?,(nv +V"  [ng(n)vv] = -Vp + vV2(nv) (6) 

p =  � 8 9  g(n)v 2] 
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where g(n)= ( n -  3 ) / (n -  6) for the six-bit model. The density dependence 
of g(n) causes a non-Galilean effect. The incompressible Navier-Stokes 
equations are recovered only in the low-Mach-number limit when time, 
pressure, and viscosity are rescaled by the factor g for constant-density 
problems. 

The four-dimensional face-centered-hypercubic lattice (FCHC) was 
proposed by d'Humi6res et aL (31) to simulate three-dimensional 
problems. (~9'71) The four-dimensional model was chosen because no three- 
dimensional single-speed lattice model yields and isotropic stress tensor to 
fourth order in the velocity. The FCHC lattice is the set of all points on the 
integral lattice for which the sum of the coordinates is even. Each lattice 
site has 24 nearest neighbors that are a distance x/2 away. Particle 
collisions in each site can involve up to 24 particles and conserve mass and 
momentum. The velocity of a particle at site x can be defined as ea, 
a =  1, 2,..., 24. A periodic condition for the fourth dimension is used, 
leading to the pseudo-FCHC model. Projecting the physical quantities to 
three-dimensional space, one obtains fluid equation (6) with g (n)=  
2(24 - 2n)/3(24 - n). 

3. A LATTICE GAS A P P L I C A T I O N :  F L O W S  T H R O U G H  
P O R O U S  M E D I A  

One of the most successful applications of the lattice gas methods is 
the flow through porous media. (1'19'72) Here the Reynolds numbers are 
small and flow geometry is very complicated, a major difficulty for the 
traditional method. Nonslip and free-slip conditions can be implemented 
easily by chosing the velocity reversal and symmetry relection at the 
boundary. 

Darcy's law plays an essential role in flow through porous media. It 
relates the flow flux and the pressure drop across a complex sandstone 
slab: 

K@ (7) 
q -  vdx  

where q is the volume flow rate per unit area, dp/dx is the pressure 
gradient, and K is the permeability. The permeability only depends upon 
pore structure. It is independent of the fluid transport coefficients for low- 
Reynolds-number flows. Determination of permeability is the one of main 
objectives for research on flow through porous media. 

Using lattice gas simulations, we have studied the relationship between 
permeability and porosity and fractal dimension of the sandstones. Media 
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can be generated with a prescribed porosity and fractal dimension. (19) For 
all calculations, we use a nonslip condition at solid boundaries. In Fig. 1, 
we present a typical velocity vector field for two-dimensional lattice gas 
simulations. The pressure difference between the edges of the left and right 
is 0.2. By measuring the flux through sandstone for a given pressure 
difference, one can calculate the permeability of the sandstone using (7). 
In Figs. 2a and 2b, we present the numerical results of the measurements 
of permeability as a function of porosity ~ and fractal dimension of the 
sandstone D. The calculated permeabilities agree qualitatively with realistic 
observations.(32~ 

In Fig. 3, we show the pressure distribution in real sandstone 
(1024 x 600 lattice cells). The geometry is the digitized image of an etched 
glass micromodel. Dark blue represents the medium and the other colors 
represent pressures. In Fig. 4, we show the spatially averaged (in y direc- 
tion) pressure as a function of x. One can see a qualitative agreement with 

Fig. 1. A typical velocity distribution for flow through porous media in a complicated 
boundary. 
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a linear pressure drop across the sample except near the inlet and outlet 
regions. The direct experimental measurement of the permeability for this 
micromodel is approximately 23 darcys. Our lattice gas simulation yielded 
21.9 darcys. Simulation and experiment agree within 5 %. 

Two-phase immiscible fluids can be simulated by an extension of the 
original FHP-type lattice gas model. The important property to model 
two-phase flows is the surface tension between the fluids and the wettability 
between fluid and solid materials. In order to represent two different fluids, 
such as gas and liquid, Rothman and Keller (73'74) first introduced the 
concept of colored particles. In their model, different types of particles are 
painted with different colors to represent different fluids. In order to model 
short-range attractive interactions between particles of the same type, a 
local color gradient was used in the local collision rules, which required the 

nearest-neighbor color information. They successfully applied this model to 
several physical problems, including the calculation of relative per- 
meability, viscous fingering, and phase spinodal decomposition. Somers 
and Rem (7s) introduced a different lattice gas model for two-phase flows. 
Their idea is to use the colored holes to store information of the local par- 
ticle colors. The important contribution of this colored hole picture is to 
make the collision rules purely local. This made the implementation more 
efficient than earlier models. Recently, we have extended Somers and Rem's 
model to viscous fingering, surface tension, and contact angles between 

Fig. 2. 
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(a) The permeability versus porosity for fractal dimension D = 2 . 5 .  (b) The 
permeability versus the fractal dimension of sandstone for porosity e = 0.7. 



Fig. 3. Pressure distribution for flow through porous media. The dark blue represents the 
sandstone, the left side (red) is the high-pressure region, and the right side (blue) is the low- 
pressure region. The sandstone is digitized from a micromodel. The measurement of the 
permeability for this geometry is about 5 % error compared with experimental measurement. 
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fluids and solid walls. (21) Applications of this model to physical flows have 
successfully shown the qualitative agreement with experiment. 

In our new model, particles and holes are colored red or blue (we use 
black for red and white for blue in plots in this paper). As many as six 
moving particles and one rest particle (all with unit mass) may occupy 
each lattice site simultaneously. For each direction at a given site, we assign 
a two-bit Boolean variable (f~(x, t), Ni(x, t)), i = 1, 2,.., 7, for space x and 
time t, where (0, 0) represents a blue hole, (0, 1) a red hole, (1, 0) a blue 
particle, and (1, 1) a red particle. This lattice gas model requires 14 bits per 
sit. Exclusion of particle and holes is used to allow only one particle or one 
hole in a given state. Particles do not change colors during advection or 
collision processes and holes can change colors during collision process. In 
order to ensure that the two-phase fluids satisfy the Navier-Stokes 
equations, we have to enforce mass conservation for each color particle and 
total momentum conservation. This procedure produces the following 
constraints for the collision rules: 

and 

Fig. 4. 
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The essential idea in our new collision rules is to have the color holes 
retain the memory of particles of the same color. We let this color 
information propagate and influence collisions in such a way that particles 
scatter preferentially in the direction opposite to the same color hole. 
Therefore, the color hole field near a color interface plays an important 
role in determining the directions of colored particles after collisions. 
Colored holes are created and destroyed as follows. When a particle 
changes direction in a collision, a hole of the same color is created in the 
original direction. A particle annihilates any hole if one exists in the new 
direction. Thus, the consequence of this rule for colored holes is that infor- 
mation about the local particle color is transmitted by the holes a distance 
on the order of a mean free path. 

We define the local particle color flux field G and hole color flux field 
F as follows: 

G = ~ (2f~ - 1) N~e~ 
i 

F = ~  ( 2 f i -  I ) ( I  - N~)e~ 
i 

(9) 
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Fig. 5. Two-phase oil and water mixture configurations in a lattice gas simulation at 
different times: t=O, 4000, 8000, and 12000. Black represents oil drop and white represents 
water, with d<0 .4  and dr/d=O.1. 
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Our rules for particle collisions are as follows: First, we choose the 
output state from all possible output states which maximize the quantity 
Q = - F "  G', where F is calculated from an input hole state and G' is 
calculated for the possible output particle states. This step forces colored 
particles to move in the opposite direction to the local color gradient. 
Second, when there are several configurations that have the same maxi- 
mum value of Q, then we choose the output having the minimum IG'I. This 
step directs the colored particles as closely as possible in the opposite 
direction of the local color hole flux. The third step is to preferentially 
produce output states with a rest particle. This slows down the flow of the 
fluid and enhances phase separation as well as the surface tension. Fourth, 
if ambiguity remains, then we choose the output that minimizes the 
viscosity. This step requires that the output state be different from the input 
state. One can verify that the above operations reduce the maximum 
degeneracy to six. For real coding, we randomly pick one of the possible 
output states at each time step. 

In Fig. 5, we present oil drop distributions (represented by black) in a 
water background (represented by white) after an initial randomly mixed 
state. One can see the existence of the attractive force between the same- 
color particles from the spinodal decomposition process. (74~ The surface 
tension can be determined by measuring the pressure difference across the 
interface of the drop. Figure 6 is a typical total pressure distribution across 
a drop. We have also measured the surface tension, given by the Laplace 
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r 

Fig. 6. Pressure distribution as a function of distance r from the center of the bubble. The 
pressure change at the interface demonstrates the existence of surface tension. The simulation 
has been done for d =  0.4 and d/d= 0.1. 
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Fig. 7. Contact angle dimonstrat ions for d = 0 . 4  and dr/d=O.1 at t = 1000 and !00,000. 
There is a wall in the middle of space with Pb = 0.8 in the upper part and Pr = 0.8 in the lower 
part. 

formula, (32) versus the radius for a total density d=0.4 and red particle 
density d r=0.1. We find that the surface tension is independent of the 
radius. 

The idea to use holes to represent the local particle color memory can 
be also used to create the potentials for the interaction between solid 

Fig. 8. Typical configurations for two-dimensional Rayleigh-Taylor instability with a denser 
fluid (dark black) above a less dense fluid (white) under the influence of gravity, The light 
black represents the cells with zero particle occupation. Times shown in the plots are in lattice 
units. 
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material and fluids. If a hole collides with a wall, it can bounce back and 
change its color with probability P. The magnitude of P determines the 
intensity of the attraction between the wall and the same-color particles. 
A typical contact angle for red fluids is shown in Fig. 7. 

In Fig. 8, we present a simulation for two-dimensional Rayleigh- 
Taylor instability. The gravitational forcing is from right to left. The fluid 
in dark black is denser than the fluid in white. The extra forcing for dark 
black fluid is approximately 0.0048 each time step per site if there are states 
allow'ed to be forced. (51) With the evolution of time, one sees clearly that 
an instability occurs and the fingering emerges. This quanlitatively agrees 
with observations (69) and other numerical simulations.(61 

4. P H A S E  T R A N S I T I O N  

There are several possible strategies for extending the lattice gas 
methods to describe phase transitions. In the work by C6cile et al., (~2'13) a 
lattice gas model was developed to simulate the gas-liquid phase transition 
by introducing a long-range interaction. Here, we only discuss the simplest 
possible model (14) that describes a phase transition. To model phase 
transition phenomena and nonideal gas equation of state with local inter- 
action rules, it is important to introduce at least two energy levels in the 
lattice gas model. 

In addition to the traditional six-bit FHP moving particles, we use a 
"bound pair" particle, which has zero momentum and twice the mass of 
moving particles. The simple interactions between moving particles and 
bound pairs are as follows: a head-on collision between moving particles 
will be changed to be a bound-pair particle; and a bound-pair particle will 
change to be two particles with zero tota!.~momentum. This transition 
process between moving particles and bound pairs follows a Markov 
process. A transition probability for the system to change from one state to 
another is proportional to exp(-/~AE), where A E  is the potential energy 
difference between the two states and /~ is the reciprocal temperature 
defined for the canonical ensemble. It can be shown that the canonical 
ensemble is the equilibrium invariant measure for this lattice gas system 
with temperature l/ft. (62) The potential energy change associated with a 
binding transition at a site is AE(x)=--~0~2/6 1 N0(x+ei).  A binding 
probability O = 2 e x p ( - ~ A A E ) / [ l + e x p ( - B A E ) ]  (2~<1) is  assigned at 
each site ~of the lattice. The unbinding probability ~ for bound pairs is 
2(1-~b). A transition is not allowed if it leads to a state which has more 
than one particle per microstate. For example, if No = 1, ~ is sampled and, 
if successful, one of the three paired momentum directions is chosen with 
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equal probability. An unbinding is allowed only if no free particles occupy 
the chosen pair of directions. If N o = 0, one of the three paired momentum 
directions is chosen with equal probability. If the chosen pair of the free 
particle states is occupied, ~b is sampled and, if successful, a binding occurs 
such that the pair of free particles from a bound pair and No becomes one. 
For fixed fl, ,~= 1 leads to the shortest time for the system to reach 
equilibrium: Advection and elastic collision processes also occur at each 
time step. The FHP model is the special case with fi = -co .  

The modified microdynamical kinetic equation becomes 

N~(x+ea,  t + l ) = N ~ ( x , t ) + A ~ + H ~ ;  a = l  ..... 6 

No(x, t +  1)= No(x, t ) + H  o (10) 

where the additional term H,, (a = 0,..., 6) compared with (1) is the 
contribution from the transition processes: 

l I , , - - -~ f (1  - N.(x, t ) ) -N' .N~(x,  t), a = 0  ..... 6 (11) 

In (11), ~ +  and ~a (=0,  or 1) are the creation and annihilation operators 
for N~ due to the transition processes, which depend on the particle 
occupations at site x and the configuration of the bound pairs at the six 
nearest-neighbor sites. The detailed form of H a guarantees that the particle 
occupation for each state is either 0 or 1. From the explicit expressions for 
Na and M+,(20) one can show that the conservation of mass and momen- 
tum requires ~6= ~ / / . +  2H ~ = 0 and y~6%= 1 e~H~ = 0. 

To approximate the equation of state, we use a mean field approxima- 
tion which assumes: (i) no correlations between particles in different states 
at the same site and same time, 

(N~(x, t) Nb(x, t ) )  = (N~(x, t ) ) (Nb(x,  t)), a r  

and (ii) homogeneous particle distributions: ( N ~ ( x ) ) =  (N~(x')) .  It can 
be shown using an H-theorem ~42) that the equilibrium distribution for the 
moving particles has the same form as (4), and the rest particle distribution 
has the form 

1 
f o -  1 + exp(2~-/~e) (12) 

where )co= (No)  represents bound-pair distribution, e is the average 
potential energy per bound pair. Density is defined as 

n = ~ f ~ + e f o  (13) 
a 
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It can shown that this model still obeys the hydrodynamic equation (6), 
except for a different equation of state. 

In Fig. 9, we present the mean-field results for the equation of state, 
using solid lines for three reciprocal temperatures (=0.2, 0.6, and 1.0). V 
is the specific volume, 1In. The simulation was done for zero velocity in a 
system with 64 x64 lattice cells. Computer simulations also showed that 
the finite-system-size effect is negligible for such a system. The x,  ~ ,  +,  
and, [] in Fig. 9 represent different reciprocal temperatures fl = 0.2, 0.6, 1.0, 
and:l .2.  These simulations clearly show a critical point for 1 < f i <  1.2 
where @/6V= 0. This can be proved by a method of mapping our model 
to a two-dimensional Ising model on a hexagonal lattice. The critical point 
of phase transitiort'is fi = 1.09.118) 

The sound speed in this model near the transition point can be 
arbitrarily small. This feature is useful for simulating high-Mach-number 
flows. In Fig. 10, we present simulation results for a piston problem which 
studies the formation of shock waves. A periodic condition is used in the 
y direction. We initialize the flow with uniform velocity along the x 
direction and place a fixed wall on the right. The sound speed for this 
system is 0.16 and the fluid velocity is 0.3. 

The nearest-neighbor bound-pair interaction can be extended to 
include the interactions between particles with different orientations for 

Fig .  9. 
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simulating liquid crystals. For doing that, we allow bound-pair particles to 
have an orientational degree of freedom 0 which is restricted to be a 
multiple of 60 ~ because of the hexagonal lattice nature. The general inter- 
action Hamiltonian between two particles at different sites and orientations 
can be represented by H = H(Oij, r). Here 0~i is the relative angle between 
particles i and j, and r is the distance between them. In order to extend the 
model to liquid crystals, we restrict the Hamiltonian to be an even function 
of 0. Physically this restriction is related to the indistinguishability of head 
and tail of the macroscopic properties of liquid crystals. We have designed 
lattice rules which describe a transition between an orientationally ordered 
state and a disordered state which correspond to the nematic-isotropic 
transition. For simplicity, we assume that the Hamiltonian can be written 
as a summation of products of a function of angle and a function of 
distance: H(O, r ) = Z .  H , ( O ) H ' ( r ) .  It has been proved (79) rigorously that 
no long-range order can exist in systems with such a separable potential. 
Further, we take H ' ( r )  to be the same as in the model we discussed earlier. 

1 . 8  .--~,~ . . . . .  
1 . 6  p - ' ~  . . . .  ~'""i . . . .  ]'-"~'[ . . . .  ] ...... i"T'", ' " :_Z_J  

5 1 2  7 6 8  1 0 2 4  

Q 

5 ~  ~ , , , , I ' ' I , 

2 

5 1 2  7 6 8  1 0 2 4  

A 
�9 5 ~ ' ' ' L ' ' L . J  

i 
_) 

512 768 1024 
X 

Fig. 10. Discont inuous interfaces in a shock wave simulation when Mach number  is 1.875: 
pressure, density, and velocity profiles at different times ranging from t = 0 to t = 1000. Time 

interval is 100. 
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There are several possibilities for H(0); for D-dimensional problems, it is 
interesting to study the following interaction potential: 

D cos2(0) - 1 
H(O)-- D -  1 (14) 

For this Hamiltonian, a randomly distributed orientation will give zero 
average for <H(O)). A completely parallel orientation will have 
<H(O) ) =  1. When the interactions between orientations are isotropic, it is 
possible to observe two-phase transitions of the Kosterlitz-Thouless 
type. (s3) The order parameter for the system is defined as the ensemble 
average of H(O). In order to test the effect of the position interaction poten- 
tial H(r) on H(O), we introduce the parameter X, the ratio of H(r) to H(O). 
Then H(r, O) in D = 2 is 

H(r, 0) = xH(r) + 2 cos2(0) - 1 (i5) 

where H(r)=eoNo(x)~6=l No(x+Oi) and 0 is the relative orientation 
angle between the nearest-neighbor bound pairs. 

The lattice gas simulation has been done for a system with a 64 x 64 
lattice cells, in Fig. 11, we present <H(O)) versus /? for density p=4 .8  for 
Z = 0.05, and 1.0, denoted by [~, x ,  and �9 respectively. We see that the 
transition is not of the first-order type in which there would be a jump of 
the order parameter in the phase diagram. Rather, a continuous behavior 

/x 

V 

.8 
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.4 

.2 

0 
0 

' %  40"/I [] . . . .  [] @ '  
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[] 
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~ D  

i I ~ l l l l l  
1 2 

T i i --  

LJ 
3 

Fig. 11. The order parameter <H(O)) as a function of/~ for X=0.  ([]) ,  0.5 (O),  and 1.0 ( x ) 
for p = 4.8. 

822/64/5-6-17 
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Fig. 12. A typical correlation function ( c o s { 2 [ 0 ( r ) - 0 ( 0 ) ] } )  versus spatial separation. An 
algebraic decay is seen in the range from r = 20 to 50. 

is found, where one has a big change of the value of the order parameter 
over a small interval of fl values. 

The low-temperature ordered phase is characterized by quasi-long- 
range order, with a power-law decay for the correlation function g2(r) 
defined as follows: 

g2(r) = <cos{2[0(r) - 0(0)] } ) (16) 

where 0(r)-0(0) is the angular difference between an orientation at a 
given position and the orientation at r. A typical correlation function g2(r) 
versus spatial separation r is presented in Fig. 12 in log-log plot at 
t =  20,000 after a random initial condition. This time integral is long 
enough to allow the system relax to equilibrium. We found that the spatial 
decay rate is not exponential, which would characterize short-range 
correlation. Also, we observe that for r smaller than 7, the correlation 
decays faster than algebraic, while for 20 ~< r ~ 50, we observe a linear 
decay (an algebraic decay in the linear coordinate). This indicates a quasi- 
long-range order. 

5. T H E R M O H Y D R O D Y N A M I C S  

In six-bit lattice gas models, (41) energy conservation is equivalent to 
the mass conservation; therefore, the energy equation is not an independent 
equation. In seven-bit models, (3~ the kinetic equation does not conserve 
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total particle kinetic energy, for the collision cases involved rest particles. 
Thus, it is useful to include at least three different particle speeds in the 
model in order to study temperature-dependent effects. Here we consider 
the simplest case: a lattice gas model with three types of particles, 
distinguished by their speeds and masses. Without loss of generality, we 
assume the particles have the speeds zero, one, and two, with masses 
m~=2/3,  1, and 1/2, respectively. Therefore, in this model, we have 12 
nonzero-velocity states and one zero-velocity rest state allowed at each 
lattice site: e~ = c,,[cos(2rca/6), sin(2~a/6)], a = 1,..., 6; c~ = 0, 1, and 2. If e~ 

o" 1 o" 2 is the unit mass kinetic energy for type o particles, then e a = 5teal . Here 
o (=0,  1, or 2) denotes the type of particle. For each type of particle, the 
Fermi-exclusion rules applys. 

It is important to choose the collision rules conserving not only mass 
and momemtum, but also energy. Then the collision operator Aa in (1) has 
the following constraint: 

Z c~ • 2 m~Aa(ea) =0. 

Example of collisions are shown in Fig. 13. Usually, there are three 
kinds of collisions: (i) collisions between the same type of particles, (ii) 
collisions between different types of particles, but conserving the number of 
each type of particle, (iii) collisions that allow a change in the number of 
each type of particle, such as Fig. 13c. Only the last type of collision can 
change particle species. These three kinds of collisions can occur 
simultaneously or sequentially. For simultaneous collisions, there is no 
order preference for the collisions. One simply takes the entry particle 
configuration and redistributes particles while following the conservation 
rules. This usually requires a large collision table for a system with many 
possible particle velocities. Sequential collisions, however, will split the 
collision operations into an arbitrary number of steps with a subset of the 
collisions occuring during each step. Each collision uses the present particle 
distributions and requires fewer bits to describe collisions. For example, in 
Fig. 13, we can have the first kind of collision for speed-one and speed-two 
particles. Then we use the updated particles as input for the second kind 
of collision. Then we could use the updated particles as input for the third 
kind of collision. In order to simplify the collision tables, we adopt the 
sequential collisions for the computations. 

The particle equilibrium distribution in (4) is replaced by the following 
equation: 

1 
f~o~ = 

1 + exp[m~(e +/?e~. v + ~ ) ]  



1152 Chen ot  al. 

due to the additional energy conservation. The second-order moment  of (5) 
gives the energy equat ion 

O(ne) + V.  (nev )+  V" q + 2/3:Vu = 0 (17) 
Ot 

where e is the local kinetic energy defined by the formula 
m ~ ~ ne = Z . . . .  f a ( % -  v ) ( % -  v), q is the heat flux, (q)~ = 

Z . . . .  f a ( % - v ) Z ( e ~ - v ) ~ ,  and /3 is the pressure tensor, /3~ 
Ka,~ m ~ f ~ ( e ~ -  v)~ ( e ~ -  v)~. With the s tandard procedure of expansion for 
small velocity, for models in which the rest particle does not  have internal 

(a 

/L/L/N  
(b 

(c 

Fig. 13. Some typical collision rules in the lattice gas model with temperature variable. Note 
that the mass is different for different particles, and the collisions conserve the total mass, 
momentum, and energy. 
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have the stress tensor /)~=Z~.;,rn~f~(e~)~(e~)~ in the first energy, w e  

order as follows: 

~(o~ _ rig(n, ~) u~u~ + 

where 3~ is the Kronecker symbol, g(n, e) is the coefficient 
convective term, 

of the 

and 

g(n,e) D ( D + 2 ) n ~ m ~ 1 7 6  4 (18) 

p =  po + p lu  2 

In the above equations, M is the number of distinct velocity directions (six 
for a hexagonal lattice), D is the space dimension (two for our model), 
do and co are the particle density and velocity for each direction for 
a-particles, and flo is the zeroth-order expansion of ft. 

The equation of state can be written as follows: 

and 

~2 M 
po=~m~,d~,tc J ~ = n e  (19) 

a 

n 
Pl =~  [ l - g ( n , e ) ]  

Note that Eq. (19) indicates that the equation of state for this lattice gas 
system is that of an ideal gas. 

To order u 3, the heat flux vector q~0~ is 

ql ~ = h(n, e) + ZU2Ui + neui (20) 

where 

D nZ~m~d~(1  - d~)lc~l 4 
h ( n , e ) -  - 2  

2M (~,~ modo(1 - d~)tc~12)(~ rn~d~c2~) 

and )~ is a complicated function depending on the detailed structure of the 
lat t ice gas model. (2~ The complete equations for momentum and energy 
up to O(u 2) have the form 

at(nv) + V .  (ng(n, ~) vv)= -Vp  + V. (vn Vv) 

a,(ne) + V" (nay) = - V .  (nh(n, e) au) - pV. v + V. (2Va) + nv Vv: Vv (21) 
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Fig. 14. Velocity vector distribution in B6nard convection. The bottom boundary has a 
temperature of 1.48 and the upper one has a temperature of 0.54. The left and right 
boundaries are adiabatic with a free-slip velocity condition being used for tangential velocity 
components. 

The quantity h is the nonphysical additional term analogous to g in the 
momentum equation. For the Maxwell  system, ~s~ h vanishes�9 

Numerical simulations of this temperature lattice gaas model have 
been done for several typical problems, including heat conduction and 
convection between two plates and B6nard instability problems�9 In Fig. 14, 
we present the velocity vector distributions in two-dimensional B6nard 
convection by chosing the lower boundary to have a higher temperature 
than the upper boundary. Typical vortices are seen. The simulation uses 
512 x 256 lattices cells. The initial density and velocity loading are random. 
After about 30,000 times steps, we time average for 3000 steps. A spatial 
average of 16 x 16 cells is used to obtain macroscopic values. Then we can 
have 32 x 16 macroscopic cells. A nonstip condition for all walls and the 
adiabatic thermal condition for the left and right boundaries have been 
used. We have used different boundaries, such as a periodic condition for 
the lateral direction, keeping the upper and bottom boundaries as same as 
before. We also changed the wall to have nonslip conditions. All simula- 
tions show almost the same spatial velocity patterns. 

6. M A G N E T O H Y D R O D Y N A M I C S  

The simple F H P  lattice gas simulates a hard-sphere gas with zero 
radii. In order to obtain more interesting phenomena, such as two-phase 
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flOWS, phase transitions, and thermohydrodynamics, additional degrees of 
freedom are required, such as color, "bound pairs," and multiple speeds. 
These new properties of particles make it possible to extend the lattice gas 
to simulate different problems. Lattice gas methods can also be used to 
simulate magnetohydrodynamic (MHD) properties, as we describe below. 

The incompressible MHD equations couple the velocity v and 
magnetic field B. They can be written as follows: 

c~tv + v- Vv = -Vp  + (V x B) x B + vV2v 

0tB + v" VB = B. Vv + #V2B (22) 

V - v = V . B = O  

The magnetic vector potential A is related to B by V x A = B. The magnetic 
field modifies the motion of the fluid in the momentum equation through 
the Lorentz force ( V x B ) x B .  In two dimensions, v and B lie in the x y 
space and depend on only those coordinates. We can choose the magnetic 
potential A = A z; the induction equation can then be replaced by a scalar 
equation for A, 

O,A + v.  VA = vV2A (23) 

Lattice gas automata models for MHD were first proposed by 
Montgomery and Doolen./65'66) In their model, the scales quantity A is the 
fundamental variable and a magnetic potential "quantum number" 

= 1, - 1, or 0 is assigned to each particle. Later, Chen et al. (16) introduced 
another lattice gas model for particles with two vectors and a "bidirec- 
tional" advection algorithm. The advantage of the latter approach is that 
all operations are purely local and no finite-difference operations on fluid 
fields are required to close the dynamical system. Each particle is labeled 
by two vectors, e a and eb(a, b =  1,..., 6). Therefore, for each lattice site, 
there are 36 states. No more than one particle in a lattice site can have the 
same (a, b). A particle has a defined momentum quantum ea and a 
magnetic field quantum %. The "bidirectional random walk" process in 
this model is performed as follows: during the advection process at each 
time step, a particle in state (a, b) will hop from one site to one of its six 
nearest neighboring sites either in the direction e a with probability 
1--lPabl, or in the direction sign(Pab)eb with probability [P=b[. The 
parameter P=b (Ieabl ~< 1) is a function of (a, b) only. Let Nab denote the 
particle occupation in the (a, b) state and define fab as the ensemble 
average of Nab. Then the kinetic equation for f=b is described by the 
following kinetic equation: 

~?tfab(x, t ) +  {! - [Pab[)e ,  + Pab%} "Vfab(X, t)=•ab (24) 
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where g2~b is again the collision operator, which is chosen to conserve the 
total mass, momentum, and magnetic field at each site. 

The macroscopic number density n, momentum nv, and magnetic field 
B are defined by 

n=Efa,  
a,b 

n v = ~  {(1-IPabl)%+Pab%}f~b 
a,b 

n B =  2 {Oab%+ Rab%}Lb 
a, b 

(25) 

The parameters Pab, Qab, and Rab are constant for a given system and are 
chosen in such a way that the moments of (1--lPabl)%+Pab% and 
Q~b% + Rabea will satisfy (22). Because the MHD system is invariant under 
proper or improper rotations, it can be shown that these parameters only 
need to depend on [a-b1. Because the velocity field is a vector field 
and B is pseudovector for 2D, the time evolution of the velocity field 
is unchanged if the magnetic field is reversed. This requires that 
Pab = --Pab+ 3, Qab = Qab+ 3, and Rab "= - - R a b +  3. Hence, there are only six 
independent parameters in this model. These are chosen to be P~., P~a+ ~, 
Q~o, Qa~+l, R~,  and Raa+l. 

Using a Chapman-Enskog expansion for low Mach number, one can 
show that n, v, and B approximately obey the following equations: 

0 , n + V - ( n v ) = 0  

0t(nv) +V C1 -~--~ng(n)(C2v - C3 B2) 

= - V .  ng(n)[C2vv- C3BB] + vV2(nv) 

c~t(nB) + (D1 - D3)V. [ng(n) By] + (D2 + D3)V. [ng(n) vB] 

= D3 V[ng(n)v" B] + #V2(nB) 

(26) 

where g(n) = (n - 18)/(n-  36). The detailed expressions of the coefficients 
Cl, C2, C3, DI, D2, D3, V, and # only depend on the six free 
parameters. (~6) By properly selecting the values of the six parameters 
subject to the conditions C2 = D1 = D2 >~ 0, D3 = 0, and C~ >/0, together 
with the rescaling of the time by the g(n) factor, the MHD equations (22) 
are obtained in the low-Mach-number limit. 

Assume that B = B0 + 6B and v--6v, where Bo = Boey, Bo is constant, 
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and ey is the unit vector in the y direction; the linearization of Eq. (26) 
gives the following wave equation for 6B: 

~6B 
=(B0"V) 6v 

0t 

0(6v) 
up - - ~  = (Bo" V) ~U 

(27) 

It is easy to get the wave propagation speed a (Alfv6n wave speed): 

B 0 
a -  (#n)ln 

In Fig. 15, we show the simulation results for Alfv6n wave speed compared 
with analytical results for density 0.1 and 0.3. The simulation has been 
done for a system with 8192 x 128 lattice cells. The wave speed is measured 
by the correlation functions in the long-wave limit. (18) 

Hartman flow is a two-dimensional (in the x - y  plane) steady channel 
flow with conducting and nonslip boundaries on the two walls with a 
distance 2L; the flow is driven by the pressure difference between two edges 
along the x direction while keeping the y-direction magnetic field to be 

Fig, 15. 
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• d = 0.i; D. d= O ~  
- : Analytical Results 

09 

< 0.05 

_0 ~/-~ ~ ~_ E I , r , ~ 1 , , J , 
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Bo 

Afv6n wave speed versus the magnetic intensity B o for density d =  0.t and d =  0.3. 
The solid lines are the analytical results, 
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Fig. 16. The x-direction velocity distribution across the channel for a Hartman flow. The 
solid line is the case with By, = 0.1 and the squares represent the case with By = 0, 

constant  everywhere. There are two kinds of boundar ies  for Bx on the 
walls: (i) OyB x = 0; (ii) Bx = const. Here we only show the first case. In  the 
lattice gas simulat ion,  we use a homogeneous  forcing along the flow 

direction to replace the pressure difference. The forcing only changes the 
m o m e n t u m  along the flow direction by flipping particles in the negative 

flow direction to the positive flow direction with a given probabil i l ty.  There 
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Fig, 17. The x-direction magnetic field distribution across the channel with B),=0.t, seen to 
be an odd function of y in accordance with the exact solutions, 
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are no B changes during the forcing processes. The constant By is con- 
trolled by a periodic condition in the y direction. In order to have 8yBx = 0 
on y = 0  and 2L and satisfy the odd-function requirement for Bx, the 
simulation has used a channel with of 4L: the forcing from y = 0 to y = 2L 
is along the positive x direction, while the forcing in another half-space is 
along the negative x direction. This forcing will give the zero-velocity con- 
dition for y = 0 and 2L. Because all quantities are only functions of y, we 
use a periodic condition for the x direction and all physical quantities are 
averaged along the x direction. In Fig. 16, we present the typical velocity 
distribution for Hartman number H = 2  (the solid line) compared with 
H = 0  ([~) when they have the same magnitude of forcing, where H is 
defined as H--ByL/(#v)  1/2, where # and v are the resistivity and kinematic 
viscosity, respectively. We clearly see the departure of the velocity from a 
parabolic distribution for the zero magnetic field case. In Fig. 17, we show 
Bx as a function of the channel width; it can be seen that this lattice gas 
model preserve the odd-function feature of the Bx field. 

7. C O N C L U D I N G  R E M A R K S  

In this paper, we have discussed several lattice gas models which are 
capable of qualitatively reproducing important physical features. 

From a theoretical point of view, it would be interesting to have a 
lattice gas model with the Galilean-invariance property, for which the 
convective coefficient g is unity for all densities. This is also a crucial 
requirement for simulating compressible high-Mach-number flows. Multi- 
speed lattice gas models provide one possibility for overcoming this 
problem, (2~ but most method usually are only good either for a 
single density or for small density variation. 

In order to simulate high-Reynolds-number flOWS, (67) it is essential to 
increase the Reynolds number. Recent studies have achieved some success 
by violating the semi-detailed belance condition (3v'75/ for collision 
operators. But this scheme usually lacks rigorous theoretical fundations, in 
cluding the form of the equilibrium dfistribution. How to prove the 
generalized H-theorem for such a system and derive the kinetic theory are 
still open. (56) 

Even though the lattice gas methods have been used for diverse 
dynamic systems, it seems that this method still has potential applications 
to many new fields, which may include some complicated physical 
phenomena, such as chemical reacting flows, non-Newtonian fluids, and 
solidification, for which the particle picture is the natural description. 



1160 Chert e t  aL 

ACKNOWLEDGMENTS 

We thank H. Brand, D. Campbell, H. Chert, K. Dimer, K. Eggert, 
D. Grunau, L. W. Klein, A. Lawniczak, Y. C. Lee, D. Levermore, E. Y. Lob, 
L. Luo, D.O. Martinez, H. Rose, B. Travis, and C.H. Tsao for helpful 
discussions. This work is supported by the NASA Innovative Research 
Program under grant NAGW 1648, by the U.S. Department of Energy at 
Los Alamos National Laboratory, and by DARPA under grant DPP8850. 

REFERENCES 

1. K. Balasubramanian, F. Hayot, and W. F. Saam, Phys. Rev. A 36:2248 2253 (1987). 
2. D. Bernardin, O. E. Sero-Guillaum, and C. Sun, Multispecies 2D lattice gas with energy 

levels: Diffusive properties, Physica D (1990), in press. 
3. P. M. Binder, Complex System 3:1-7 (1989). 
4. P. M. Binder and D. d'Humi+res, Phys. Lett. A 140:465-468 (1989). 
5. B. M. Boghosian and C. D. Levermore, Complex Systems 1:481-496 (1987). 
6. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface 

tension, preprint (1990). 
7. U. Brosa, C. Huettner, and U. Werner, Flow through a porouos membrane simulated by 

cellular automata and by finite elements, J. Stat. Phys. (1990). 
8. J. E. Broadwell, Phys. Fluids 7:1243 1247 (1964). 
9. D. Burgess, F. Hayot, and W. F. Saam, Phys. Rev. A 38:3589-3592 (1988), 

10. C. Burges and S. Zaleski, Complex Systems 1:31 50 (1987). 
11. H. Cabannes and D. H. Tiem, Complex System !:575-584 (1987). 
12. A. C6cile and S. Zaleski, Phys. Rev. Lett. 64:1 (1990). 
13. A. Cecile, D. H. Rothman, and S. Zaleski, A liquid-gas model on a lattice, Physica D 

(1990), in press. 
14. H. Chen, S. Chen, G. D. Doolen, Y. C. Lee, and H. A. Rose, Phys. Rev. A 40:2950-2853 

(1989). 
15. H. Chen, S. Chen, G. D. Doolen, and Y. C. Lee, Complex Systems 2:259-267 (1988). 
16. H. Chen, W. H. Matthaeus, and L. W. Klein, Phys. Fluids 31:1439 1445 (1988). 
17. H. Chert, W. H. Matthaeus, and L. W. Klein, J. Comput. Phys. 88:433 (1990). 
18. S. Chen, H. Chert, G. D. Doolen, Y. C. Lee, H. Rose, and H. Brand, Lattice gas models 

for nonideal gas fluids, Physiea D 47:97 (1991). 
19. S. Chen, K. Diemer, G. D. Doolen, K. Eggert, S. Gutman, and B. J. Travis, Lattice gas 

automata for flow through porous media, Physica D 47:72 (1991). 
20. S. Chen, Hudong Chen, Gary D. Doolen, Semion Gutman, and Minxu Lee, A lattice gas 

model for thermohydrodynamics, J. Stat. Phys. 62:1121 (1991). 
21. S. Chen, G. D. Doolen, K. Eggert, D. Grunau, and E. Y. Loh, A local lattice gas model 

for immiscible fluids, Phys. Rev. A 43:245 (1991). 
22. S. Chen, Zhen-su She, L. C. Harrison, and Gary D. Doolen, Phys. Rev. A 39:2725 2727 

(1989). 
23. Z. Chen, J. L. Lebowitz, and E. R. Speer, Microscopic shock structure in model particle 

systems: The Boghosian Levermore cellular automata revisited, preprint (1990). 
24. B. Chopard and M. Droz, Phys. Lett. A 126:476-480 (1988). 
25. P. Clavin, D. d'Humi6res, Y. Pomeau, and G. Searby, J. Fluid. Mech. 188:437-464 (1988). 
26. R. Cornubert, D. d'Humi~res, and D. Levermore, A Knudsen layer theory for lattice 

gases, Physiea D (1990), in press. 



Lattice Gas Automata for Simple and Complex Fluids 1161 

27. D. Dab and J.-P. Boon, Cellular automata approach to reaction-diffusion systems, in 
Cellular Automata and Modeling of Complex Physical Systems, P. Manneville, N. Boccara, 
G. Y. Vichniac, and R. Bidaux, eds. (Springer-Verlag, 1989), pp. 257-273. 

28. J. P. Dahlburg, D. Montgomery, and G. D. Doolen, Phys. Rev. A 36:2471 2474 (1987). 
29. D. d'Humi6res, P. Lallemand, and G. Searby, Complex Systems 1:333-350 (1987). 
30. K. Dimer, K. Condie, S. Chen, T. Shimomura, and G. Doolen, Density and velocity 

dependence of Reynolds numbers for several lattice gas models, in Lattice Gas Automata 
for Partial Differential Equations, Gary D. Doolen, ed. (Addison-Wesley, 1989), 
pp. 137-178. 

31. D. d'Humi6res, P. Lallemand, and U. Frisch, Europhys. Let. 2:291 297 (1986). 
32. F. A. L. Dullien, Porous Media, Fluid Transport and Pore Structure (Academic Press, 

1979). 
33. G. D. Doolen, ed., Complex Systems 1(4):545-851 (1987). 
34. G. D. Doolen, ed., Lattiee Gas Methods for PDEs (Addison-Wesley, 1989). 
35. G. D. Doolen, ed., Lattice gas methods for PDE's: Theory, applications and hardware, 

Physica D, in press. 
36. M. Droz and B. Chopard, Non-equilibrium phase-transitions and cellular automata, 

Chaos and Complexity, R. Lovi, S. Roffo, S. Ciliberto, and M. Buiatti, eds. (World 
Scientific, 1988), pp. 307-317. 

37. B. Dubrulle, Complex Systems 2:577-609 (1988). 
38. M. H. Ernst, Mode-coupling theory and tails in CA-fluids, Physica D (1990), in press. 
39. M. H. Ernst and J. W. Duffy, J. Stat. Phys. 58:57 86 (1990). 
40. D."Frenkel and M. H. Ernst, Phys. Rev. Lett. 63:2165-2168 (1989). 
41. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56:1505 (1986). 
42. U. Frisch, D. d'Humidres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, 

Complex Systems 1:649-707 (1987). 
43. A. K. Gunstensen and D. Rothman, A Galilean-invariant immiscible lattice gas, Physica 

D (1990), in press. 
44. J. Hardy, O. de Pazzis, and Y. Pomeau, Phys. Rev. A 13:1949-1961 (1976). 
45. J. Hardy and Y. Pomeau, J. Math. Phys. 13:1042-1051 (1972). 
46. B. Hasslacher, Los Alamos Sciences 15:211-217 (1988). 
47. F. Hayot, Fingering instability in a lattice gas, Physica D (1990), in press. 
48. M. Henon, Complex Systems 1:179-208 (1987). 
49. J.-I. Huang, Y.-H. Chu, and C.-S. Yin, Geophys. Res. Lett. 15:1239-1241 (1988). 
50. K. Huang, Statistical Mechanics (Wiley, New York, 1987). 
51. L. Kadanoff, G. McNamara, and G. Zanetti, Phys. Rev. A 40:4527-454l (1989). 
52. X. P. Kong and E. G. D. Cohen, A kinetic theorist's look at lattice gas cellular automata, 

Physiea D (1990), in press. 
53. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181 (1973). 
54. A. Ladd, E. Michael, and A. Frankel, Phys. Rev. Lett. 60:975-978 (1988). 
55. A. Lawniczak, D. Dab, R. Kapral, and J.-P. Boon, Reactive-lattice gas automata, Physica 

D (1990), in press. 
56. D. Levermore, Private communication. 
57. E. Y. Loh, S. Chert, and G. D. Doolen, Two-dimensional high Reynolds number simula- 

tions on the CM-2, preprint. 
58. L. S. Luo, H. Chen, S. Chen, G. Doolen, and Y. C. Lee, Generalized hydrodynamic 

transport in lattice gas automata, Phys. Rev. A 43:536 (1991). 
59. F. Liu and N. Goldenfeld, Deterministic lattice gas model for diffusion-controlled crystal 

growth, Physiea D (1990), in press. 
60. A. Majda, Compressible Fluid and Systems of Conservation Laws in Several Space 

Variables (Springer-Verlag, 1984). 



1162 Chen e t  ai.  

61. G. R. McNamara and G. Zanetti, Phys. Rev. Lett. 61:2332-2335 (1988). 
62. N. Metropolis et aL, J. Chem. Phys. 21:1087 (1953). 
63. K, Molvig, P. Donis, J. Myczkowski, and G. Vichniac, Continuum fluid dynamics from 

lattice gas, MIT (1988), preprint. 
64. R. Monaco, ed., Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of 

Hydrodynamics (World scientific, 1989). 
65. D. Montgomery and G. D. Doolen, Phys. Lett. A 120:229-231 (1987). 
66. D, Montgomery and G. D. Doolen, Complex Systems 1:831-838 (1987). 
67. S. A. Orszag and V. Yakhot, Phys. Rev. Lett. 56:1691-1693 (1986). 
68. Y. H. Qian, D. d'Humi6res, and P. Lallemand, Diffusion simulation with a deterministic 

one-dimensional lattice gas models, ENS (1989), preprint. 
69. K. I. Read, Physica D 12:45-48 (1984). 
70. M. Rieger and P. Vogel, Solid State Electronics 32:1399-1403 (1989). 
71. J.-P. Rivet, M. Henon, U. Frisch, and D. d'Humi~res, Europhys. Lett. 7:231-236 (1988). 
72. D. H. Rothman, Geophysics 53:509-518 (1988). 
73. D. H. Rothman and J. M. Keller, J. Stat. Phys. 52:1119-1127 (1988). 
74. D. H. Rothman and S. Zaleski, J. Phys. (Paris) 50:2161-2174 (1989). 
75. D. H. Rothman, J. Stat. Phys. 56:1119-1127 (1989). 
76. G. Searby, V. Zahnle, and B. Denet, Lattice gas mixture and reactive flows, in Discrete 

Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. 
(World Scientific, 1989), pp. 300-314. 

77. T. Shimomura, G. D. Doolen, B. Hasslacher, and C. Fu, Los Alamos Science Special Issue 
1987:201-210 (1987). 

78. J. A. Somers and P. E. Rem, Analysis of surface tension in two-phase lattice gas, Physica 
D (1990), in press. 

79. J. P. Straley, Phys. Rev. A 4:675 (1985). 
80. S. Succi, C. Chang, E. Foti, M. Gramignami, and D. Rothman, A direct computation of 

the permeability of three-dimensional porous media, in International Conference on 
Numerical Methods in Groundwater Resources (1990), to be published in Comp. Mec. 
Institute. 

81. S, Succi, P. Santangelo, and R. Benzi, Phys. Rev. Lett. 60:2738-2741 (1988). 
82. S. Wolfram, J. Stat. Phys. 45:19-74 (1986). 
83, G. Zanetti, Phys. Rev. A 403:153%1548 (1989). 


